用户名: 密码: 验证码:    注册 | 忘记密码?
首页|听力资源|每日听力|网络电台|在线词典|听力论坛|下载频道|部落家园|在线背单词|双语阅读|在线听写|普特网校
您的位置:主页 > 每日焦点 > 社会 >

科学家首次找到宇宙大爆炸关键证据

2014-03-18    来源:网络    【      美国外教 在线口语培训

哈佛大学的天文学家刚刚宣布观测到原初引力波,这是一种时空的扰动,是爱因斯坦在100年前的广义相对论预言的一种现象,此前从未被直接观测到,它是宇宙大爆炸的“回声”。这项发现是突破性的,它提供了有关宇宙诞生与演化的决定性证据。

引力波是在宇宙中蔓延的微小的原始波动。天文学家们数十年来一直致力于对这一现象的搜寻,因为这一现象构成了两大重要理论缺失的关键环节。其中一项理论开创了当代科学对于宇宙起源与演化的探究,即爱因斯坦在1916年提出的广义相对论,而另外一项则构成宇宙诞生与演化理论最后环节之一,它就是在上世纪1980年代逐渐发展起来的暴涨理论。138亿年前,在宇宙大爆炸之后的一瞬间,时空的暴涨造就了宇宙的开端——在不到10-34秒的时间里,宇宙迅速膨胀。

Astronomers announced on Monday that they had discovered what many consider the holy grail of their field: ripples in the fabric of space-time that are echoes of the massive expansion of the universe that took place just after the Big Bang.

Predicted by Albert Einstein nearly a century ago, the discovery of the ripples, called gravitational waves, would be a crowning achievement in one of the greatest triumphs of the human intellect: an understanding of how the universe began and evolved into the cornucopia of galaxies and stars, nebulae and vast stretches of nearly empty space that constitute the known universe.

"This detection is cosmology's missing link," Marc Kamionkowski, a physicist of Johns Hopkins University and one of the researchers on the collaboration that made the finding, told reporters on Monday at a press conference at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts.

Gravitational waves are feeble, primordial undulations that propagate across the cosmos at the speed of light. Astronomers have sought them for decades because they are the missing evidence for two theories.

One is Einstein's general theory of relativity, first published in 1915, which launched the modern era of research into the origins and evolution of the cosmos. The general theory explains gravity as the deformation of space by massive bodies. Einstein posited that space is like a flimsy blanket, with embedded stars and planets causing it to curve rather than remain flat.

Those curvatures of space are not stationary, Einstein said. Instead, they propagate like water in a lake or seismic waves in Earth's crust and so are "gravitational waves" that "alternately squeeze space in one direction and stretch it in the other direction," Jamie Bock, a physicist at the California Institute of Technology in Pasadena and one of the lead scientists on the collaboration, told Reuters.

The other, much more recent theory that predicted gravitational waves is called cosmic inflation. Developed in the 1980s, it starts with the well-accepted idea that the universe began in a Big Bang, an explosion of space-time, 13.8 billion years ago.

An instant later, according to the theory, the infant cosmos expanded exponentially, inflating in size by 100 trillion times. That made the cosmos remarkably uniform across vast expanses of space and also super-sized tiny fluctuations in gravity, producing gravitational waves.

Although the theory of cosmic inflation received a great deal of experimental support, the failure to find the gravitational waves it predicted caused many cosmologists to hold off endorsing it.

That may change after the announcement on Monday.

"These results are not only a smoking gun for inflation, they also tell us when inflation took place and how powerful the process was," Harvard University physicist Avi Loeb said in a statement. The strength of the gravitational waves' signal is tied to how powerfully the universe expanded during the brief era of inflation.

The measurements announced by the astronomers on Monday are nearly twice as large as cosmologists predicted for gravitational waves, suggesting a great deal more could be learned about how inflation worked.



顶一下
(0)
0%
踩一下
(0)
0%
手机上普特 m.putclub.com 手机上普特
[责任编辑:katee]
------分隔线----------------------------
发表评论 查看所有评论
请自觉遵守互联网政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 密码: 验证码:
  • 推荐文章
  • 资料下载
  • 讲座录音
普特英语手机网站
用手机浏览器输入m.putclub.com进入普特手机网站学习
查看更多手机学习APP>>